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Abstract

The e�ect of an insoluble surfactant on the capillary instability of an annular layer that lines the
interior surface of a circular tube and surrounds another annular layer that lines the exterior surface of
an inner circular tube is considered. As the radius of the inner cylinder tends to vanish or the radius of
the outer cylinder tends to in®nity, we obtain either an annular layer coated on the interior or exterior
surface of a circular tube, or an in®nite thread suspended in a quiescent in®nite ambient ¯uid. In the
®rst part of this paper, a linear stability analysis is carried out for axisymmetric perturbations in the
absence or presence of ¯uid inertia, resulting in a nonlinear algebraic eigenvalue problem whose solution
produces the complex phase velocity. When the ¯uid inertia is negligible, there are two normal modes;
one is stable under any conditions, and the second is unstable when the wave length of the perturbation
is longer than the circumferential length of the unperturbed interface. Stability graphs are presented to
illustrate the properties of the normal modes and their dependence on the ratio of the viscosities of the
outer and inner ¯uid, the surfactant di�usivity, the sensitivity of the surface tension to the surfactant
concentration, and the ratio of the cylinder to the thread radius. In all cases, the presence of a
surfactant reduces the growth rate of the unstable normal mode but is not able to stabilize the interface.
As the surfactant di�usivity is raised, or the surface tension becomes insensitive to the surfactant
concentration, the unconditionally stable mode becomes physically irrelevant by requiring an extremely
large amplitude of the perturbation in the surfactant concentration, yielding well-known results for
uniform surface tension. In the second part of this paper, the nonlinear growth of the instability of an
in®nite thread is studied under conditions of Stokes ¯ow by dynamical simulation, assuming a linear
relationship between the surface tension and the surfactant concentration. The numerical results reveal

International Journal of Multiphase Flow 27 (2001) 1±37

0301-9322/01/$ - see front matter 7 2000 Elsevier Science Ltd. All rights reserved.
PII: S0301-9322(00)00011-2

www.elsevier.com/locate/ijmulflow

* Corresponding author. Tel.: +1-858-534-6530; fax: +1-858-534-7078.
E-mail address: cpozrikidis@ucsd.edu (C. Pozrikidis).



that the presence of a surfactant may have a signi®cant e�ect on the shapes of developing interfacial
structures, and that a similarity solution adequately describes the behavior of the thread close to the
time of breakup. In the third part of this paper, the instability of an annular layer coated on the interior
of a cylindrical tube is considered, with particular reference to bronchial airway collapse. Numerical
simulations reveal that the qualitative features of evolution are insensitive to the presence of the
surfactant and to the wave length of the perturbation, although both signi®cantly a�ect the growth rate
of the instability. A comparison of the predictions of a thin-layer ¯ow model with the results of the full
linear stability theory and with boundary-integral simulations illustrates the capabilities and limitations
of the asymptotic approach. 7 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Capillary instabilities of curved interfaces are encountered in a broad range of natural,
engineering, and biophysical applications involving ¯uid mixing, spraying, atomization,
liquid coating and lubrication. Two classes of problems have received special attention:
The capillary instability and breakup of a jet or elongated thread suspended in an
ambient ¯uid; and the instability of an annular layer coated on the interior or exterior
surface of a cylindrical tube. Recent reviews on these two general topics have been given
by Yarin (1993), Grotberg (1994), Papageorgiou (1996), Eggers (1997), Lin and Reitz
(1998), Yap and Gaver (1998) and QueÂ reÂ (1999). Our emphasis in this work is on the
e�ect of an insoluble surfactant.
Laboratory observations have shown that the presence of a surfactant may have an

important in¯uence on the instability of a jet or thread and, consequently, on the
distribution of the droplet size resulting from breakup (e.g. Burkholder and Berg, 1974).
In industrial applications, the process of jet or thread disintegration determines the
e�ciency of mixing of two stirred immiscible ¯uids under conditions of laminar or
turbulent ¯ow (e.g. Walstra, 1993; Janssen et al., 1994), as well as the e�ectiveness of
industrial equipment in mass transfer chemical engineering processes (Skelland and Walker,
1989; Skelland and Slaymaker, 1990). Milliken et al. (1993) simulated the breakup of an
elongated axisymmetric drop in the presence of an insoluble surfactant and in the absence
of ¯uid inertia, and found that variations in surfactant concentration may have a
signi®cant in¯uence on the interfacial shapes developing during the nonlinear stages of the
motion. A similar in¯uence is expected in the case of an in®nite thread, but the precise
dependence has not been described by numerical simulation.
A number of authors investigated the e�ect of a soluble or insoluble surfactant and the

signi®cance of interfacial rheology on the linear instability of a liquid jet or thread. Anshus
(1973) demonstrated that an insoluble non-di�using surfactant generally slows down the
process of breakup. Burkholder and Berg (1974), Tarr and Berg (1980), Coyle et al. (1981) and
Nelson and Berg (1982) studied the e�ects of surfactant solubility and chemical reaction, and
Whitaker (1976) and Hajiloo et al. (1987) accounted for the e�ects of surface shear and
dilatational viscosity; Hansen et al. (1999) allege a sign error in one of Whitaker's equations.
In a parallel study, Rabinovich (1979) accounted for the e�ect of surface di�usivity. More
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recently, Elemans et al. (1990) and Pelierne and Lequeux (1991) considered the stability of a
thread with varying surface tension due to contamination. Pelierne and Lequeux (1991) tackled
the linear stability problem for non-Newtonian ¯uids and BousineÂ sq interfaces, but did not
explicitly recognize the presence of a surfactant in the governing equations.
Studies of the in¯uence of a surfactant on the stability of an annular layer lining the interior

of a tube have been motivated, to a large extent, by applications in pulmonary ¯uid dynamics.
In the lung, a liquid lining protects the cells of the alveolar surface against mechanical damage.
The surface tension of the liquid-air interface tends to minimize the interfacial area, and thus
favors airway collapse during exhalation. To stabilize the lining, biological surfactants like
dipalmitoylphosphatidylcholine, lecithin, and sphingomyelin are naturally secreted from the
alveolar type II cells, to reduce the surface tension. The surfactant concentration is a function
of the lung volume: It decreases at inspiration due to expansion, and it increases at expiration
due to compression to the extent where micelles may develop. Under pathological conditions,
such as those responsible for the infant respiratory distress syndrome, IRDS, reduced
surfactant concentration may cause alveolar collapse (atelectasis) or the formation of liquid
bridges and lenses; both require an increase in e�ort for breathing (e.g. Hlastala and Berger,
1996). Exogenously delivered surfactants re-open collapsed airways and restore normal
breathing.
The e�ect of a surfactant on airway re-opening and collapse has been studied on several

occasions, as reviewed by Grotberg (1994) and Yap and Gaver (1998). It is generally accepted
that the physical mechanism responsible for formation of liquid bridges occluding the airways
is the Rayleigh capillary instability of a cylindrical interface (Otis et al., 1990, 1993). Airway
collapse has been attributed to a combination of the Rayleigh capillary instability and to the
relaxation of the tethering forces acting on the external surface of the airways. Otis et al.
(1990, 1993) and Halpern and Grotberg (1993) developed a lubrication-¯ow model that
assumes that the wave length of a perturbation is su�ciently larger than the ®lm thickness, and
used it to simulate the evolution of the interface subject to axisymmetric perturbations. Their
results showed that surfactants decelerate the rate of lens formation due to the increased
surfactant concentration at the troughs. To account for the relaxation of the tethering forces,
Halpern and Grotberg (1993) studied the instability of a thin annular ®lm coating the interior
of a rigid or elastic circular tube using similar methods.
The e�ect of a surfactant on the instability of an annular layer coated on the exterior of a

cylinder tube has also been considered on a few occasions with reference to ®ber coating, as
reviewed by QueÂ reÂ (1999). Of particular historical signi®cance is the work by Carroll and
Lucassen (1974) who carried out a linear stability analysis for a thin annular layer in the
presence of a non-di�using surfactant, and found that, under extreme conditions, the presence
of a surfactant may reduce the growth rate of the most unstable perturbation by a factor of
four. Furthermore, Carroll and Lucassen argued that the presence of a surfactant will become
increasingly important in the ®nal stages of layer breakup.
In the ®rst part of this paper, we carry out a linear stability analysis of the interface

between two concentric annular layers bounded by an inner and an outer cylinder, subject
to axisymmetric perturbations. The in®nite thread and the annular layer arise as special
cases when the radius of the inner or outer cylinder tends to zero or in®nity. The present
analysis extends previous ones for constant surface tension, including the analysis of
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Rayleigh (1878, 1892) who investigated the breakup of an inviscid column or viscous
thread suspended in vacuum; the analyses of Weber (1931) and Tomotika (1935) who
accounted for a viscous ambient ¯uid; and the analysis of Goren (1962, 1964) who
studied the development of undulations on an annular layer coated on the interior or
exterior of a circular tube. Our results will con®rm that the presence of a surfactant
substantially decreases the growth rate of the instability but is not able to stabilize the
interface under any conditions.
In the second part of this paper, we study the nonlinear stages of the instability of an

unbounded thread at zero Reynolds number by numerical simulation. The velocity ®eld is
computed by a boundary-integral method that employs the periodic Green's function of
axisymmetric Stokes ¯ow, and the evolution of the surfactant concentration is computed by a
®nite-volume method. The results will show that the presence of a surfactant may have an
important e�ect on the shape of interfacial structures developing during the instability and
after pinch o�, and thus on the number of droplets developing after breakup. Furthermore, the
numerical results will allow us to discuss the relevance of a similarity solution developed by
Papageorgiou (1995) on the asymptotic behavior of the thread near the time of breakup, in the
case of varying surface tension.
In the third part of this paper, we study the instability of an annular layer coated on the

interior surface of a cylindrical tube. First, we use the boundary integral method to simulate
the evolution of the interface in the particular case where the viscosity of the core ¯uid is equal
to the viscosity of the annular layer, and investigate the e�ect of a surfactant. Second, we
compare the predictions of a ¯ow model based on the thin-layer approximation with those
arising by solving the unsimpli®ed equations of Stokes ¯ow. The comparison shows that the
viscosity of the core ¯uid plays an important role when bridges form, and establishes a point
of reference for assessing the accuracy of the simpli®ed approach.

Fig. 1. Illustration of an annular layer coated on the interior surface of an outer concentric circular tube,
surrounding another annular layer coated on the exterior surface of an inner concentric circular tube. The interface
is populated by an insoluble surfactant.
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2. Linear stability analysis for Navier±Stokes ¯ow

Consider the instability of an annular viscous layer coated on the interior surface of an outer
circular tube, and surrounding a core ¯uid that is coated on the exterior surface of an inner
circular tube, as illustrated in Fig. 1. As the radius of the inner cylinder tends to vanish and
the radius of the outer cylinder tends to in®nity, the core ¯uid reduces to an in®nite thread
suspended in an in®nite quiescent ambient ¯uid. We assume that the interface is populated by
an insoluble surfactant that di�uses along the interface, but not into the bulk of the ¯uids, and
is convected over the interface under the in¯uence of the velocity ®eld caused by the instability.
In the unperturbed state, the ¯uids are quiescent, and the surfactant is distributed uniformly
over the interface. We assume further that the e�ect of gravity is negligible, which amounts to
stipulating that an appropriate Bond number is su�ciently large.
We begin by introducing cylindrical polar coordinates �x, s, j), with the x axis coinciding

with the axis of the thread or annular layer, as shown in Fig. 1. In the unperturbed state, the
interface has a cylindrical shape with a circular cross-section of radius a. To carry out a
normal-mode analysis subject to axisymmetric perturbations, we describe the radial position of
the interface, f�x, t�, in terms of the real or imaginary part of the right-hand side of the
equation

s � f�x, t� � a� ea1exp�ik�x-ct�� �1�
where e is a dimensionless coe�cient whose magnitude is much less than unity, a1 is the
complex amplitude of the interfacial perturbation, i is the imaginary unit, k is the wave
number, and c is the complex phase velocity.
The motion of the ¯uid on either side of the interface is governed by the continuity equation

and the Navier±Stokes equation with appropriate physical constants corresponding to the
properties of the two ¯uids. Taking advantage of the axial symmetry of the ¯ow, we describe
the perturbation ¯ow in terms of the Stokes stream function Cj, where j = 1 or 2 for the inner
or outer ¯uid. The axial and radial components of the perturbation velocity are given
respectively by

ux,j � e
1

s
@Cj

@s
, us,j � ÿe1s

@Cj

@x
�2�

The azimuthal component of the perturbation vorticity is given by

o � ÿe1
s
D2Cj �3�

where D 2 is a second-order di�erential operator de®ned as

D2 � @ 2

@x 2
� @ 2

@s2
ÿ 1

s
@

@s
�4�

Substituting these expressions into the azimuthal component of the vorticity transport
equation, and linearizing the resulting expression with respect to e, we derive the fourth-order
ordinary di�erential equation
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E2
j D

2Cj � 0 �5�
where E2

j is another second-order di�erential operator de®ned as

E2
j � D2 ÿ 1

vj

@

@t
�6�

and vj is the kinematic viscosity of the jth ¯uid.
We proceed by expressing the perturbation stream function in the usual normal-mode form

Cj � fj�s� exp�ik�xÿ ct�� �7�
Substituting this expression into Eq. (5), we obtain a fourth-order ordinary di�erential

equation for the functions fj: The general solution was given by Tomotika (1935) in the form

fj�s� � s
�
A1,jI1�ks� � B1,jK1�ks� � A2,jI1

ÿ
kjs
�� B2,jK1

ÿ
kjs
�� �8�

where Al,j and Bl,j are constant coe�cients, I1, K1 are modi®ed Bessel functions of the ®rst and
second kind, and we have introduced the modi®ed complex wave numbers

k2
j � k2 ÿ ick

vj
�9�

The pressure may be expressed in the corresponding form

pj � eXj�s� exp�ik�x-ct�� �10�
Substituting Eqs. (2), (7), (8) and (10) into the x component of the Navier±Stokes equation,

and linearizing with respect to e, we ®nd

Xj�s� � ÿc k rj
ÿ
A1,jI0�ks� ÿ B1,jK0�ks�

� �11�
Next, we consider the kinematic and dynamic boundary conditions at the interface.

Continuity of velocity requires that f1 � f2 and @f1=@s � @f2=@s at s � f�x, t�, where the
function f�x, t� determines the location of the interface (Eq. (1)). Applying domain
perturbation, we derive the linearized forms

f1�a� � f2�a�,
�
@f1

@s

�
s�a
�
�
@f2

@s

�
s�a

�12�

The evolution of the deforming interface must be consistent with the motion of ¯uid
particles on either side of the interface. Requiring that the particles do not penetrate the bulk
of the ¯uids, we ®nd

@f

@t
� ux

@f

@x
ÿ us � 0 �13�

where all functions are evaluated at the location of the unperturbed interface. Substituting Eqs.
(1), (2), (7) and (8) into Eq. (13), applying once again the method of domain perturbation, and
discarding terms that are not constant or which depend linearly on e, we ®nd the following
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expression for the complex amplitude of the perturbation

a1 � 1

a c
fj�s � a� �14�

where, in view of Eq. (12), we may set j = 1 or 2 on the right-hand side.
To satisfy the kinematic boundary conditions at the surface of cylinders, we require

ux,1 �
�
1

s
@C1

@s

�
s�ai

� 0, us,1 � ÿ
�
1

s
@C1

@x

�
s�ai

� 0 �15�

and

ux,2 �
�
1

s
@C2

@s

�
s�ae

� 0, us,2 � ÿ
�
1

s
@C2

@x

�
s�ae

� 0 �16�

where ai, ae are the radii of the inner or outer cylinder.
The dynamic interfacial condition requires that the jump in the interfacial hydrodynamic

traction be balanced by the normal and tangential stresses due to surface tension, so thatÿ
sss�1� ÿ sss�2�

�
� n � 2kmg nÿ @g

@ l
t �17�

where sss�1�, sss�2� are the stress tensors for the inner or outer ¯uid, n is the unit vector normal to
the interface pointing into the inner ¯uid, km � 1=2t � n is the mean curvature of the interface,
and t is the unit vector that is tangential to the interface in an azimuthal plane and points in
the direction of increasing arc length l. All functions in (17) are evaluated at the location of the
unperturbed interface. Using Eq. (1) and standard expressions for the normal vector and mean
curvature (e.g. Pozrikidis, 1997), we derive the linearized form

n � ÿes � eika1 exp�ik�xÿ ct��ex �18�

where ex and es are the unit vectors in the axial and radial directions, and

2km � ÿ1
a
� e

a1
a2
�1ÿ k2a2� exp�ik�xÿ ct�� �19�

Subject to a normal-mode perturbation, the surface tension assumes the usual functional
form

g � g0 � eg1exp�ik�xÿ ct�� �20�

where g0 is the surface tension in the unperturbed state, and g1, is a complex constant to be
determined as part of the solution.
Substituting Eqs. (18)±(20) into Eq. (17), and linearizing both sides with respect to e, we

obtain the following two scalar boundary conditions for the tangential and normal
components:
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m1

�
@ux,1
@s
� @us,1

@x

�
ÿ m2

�
@ux,2
@s
� @us,2

@x

�
� eikg1exp�ik�xÿ ct�� �21�

and

ÿp1 � 2m1
@us,1
@s
� p2 ÿ 2m2

@us,2
@s
� e

a2

ÿ
ÿ a1�1ÿ k2a2�g0 � ag1

�
exp�ik�xÿ ct�� �22�

where both sides are evaluated at the location of the unperturbed interface, at s � a:
The surface tension, g, is a function of local surfactant concentration, G: The evolution of

the latter is governed by the convection-di�usion equation

dG
dt
� ÿu � t@G

@ l
ÿ G

s
@�su � t�
@ l

ÿ G2kmu � n� Ds

s
@

@ l

�
s
@G
@ l

�
�23�

where Ds is the surfactant di�usivity, and the derivative d/dt on the left-hand side expresses the
rate of change of a variable following the motion of interfacial marker points moving with the
component of the velocity of the ¯uid normal to the interface. Eq. (23) states that changes in
the surfactant concentration are due to convection and di�usion, as well as to condensation or
dilution due to interfacial compression or expansion. Linearizing Eq. (23) with respect to e, we
obtain

@G
@t
� ÿux @G

@x
ÿ G

@ux
@x
ÿ G2kmus �Ds

@ 2G
@x 2

�24�

where both sides are evaluated at s � a: Anticipating now that the functional form of the
surfactant concentration is consistent with that of a normal-mode perturbation, we write

G � G0 � eG1exp�ik�xÿ ct�� �25�
where G0 is the surfactant concentration at the unperturbed state, which is assumed to be
constant, and G1 is the complex amplitude of the surfactant concentration to be determined as
part of the solution. Substituting expressions (2), (19), (8), and (25) into Eq. (24), and
linearizing the resulting equation with respect to e, we determine that the complex constant G1

has the following form

G1

G0
� ikÿÿ ikc� k2Ds

�
a

n
A1,j

�
kaI0�ka� ÿ I1�ka�

�
� A2,j

�
kjaI0

ÿ
kja
�ÿ I1

ÿ
kja
��

ÿ B1,j

�
kaK0�ka� � K1�ka�

�
ÿ B2,j

�
kjaK0

ÿ
kja
�� K1

ÿ
kja
��o �26�

When the concentration of the surfactant lies below the saturation level, a linear relationship
may be assumed between the surface tension and the surfactant concentration (Adamson,
1982). Gibbs' theory gives

gc ÿ g � GRT �27�
where R is the ideal gas constant, T is the absolute temperature, and gc is surface tension of a
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clean interface that is devoid of surfactants. It is a common practice to express the sensitivity
of the surface tension to the surfactant concentration in the terms of the dimensionless
physicochemical parameter

b � G0RT

gc

�28�

Eq. (27) then assumes the equivalent form:

g � g0
1ÿ b

�
1ÿ G

G0
b
�

�29�

Setting G � 0 yields the following relation between the unperturbed-state surface tension and
that of a clean interface

g0 � �1ÿ b� gc �30�
In the context of linear stability theory, a linear relation between g and G may be derived by

expanding the generally nonlinear function g�G� in a Taylor series about the unperturbed
concentration, and then truncating the expansion after the linear term. The coe�cient of the
linear term, known as the interface elasticity, however, is no longer related to R and T as
shown in Eq. (27). To avoid making this distinction, we shall continue to use the relation (27),
bearing in mind its generalization.
Substituting Eqs. (20) and (25) into Eq. (29), we derive the following expression for the

complex amplitude of the surface tension

g1
g0
� ÿbG1

G0
�31�

where the ratio G1=G0 is given in Eq. (26). Note that when b � 0, in which case the surface
tension is insensitive to the surfactant concentration, the right-hand side of (31) reduces to
zero. Due to the limitations of the linear model, the range of values of the sensitivity
parameter b considered, would be less than 0.5; higher values may result in negative surface
tension.
Collecting the kinematic and dynamic boundary conditions expressed by Eqs. (12), (15), (16),

(21) and (22), and using the derived expressions for the velocity, pressure, surface tension, and
mean curvature, we formulate a homogeneous system of eight equations for the eight unknown
coe�cients Ai,j and Bi,j where i, j = 1, 2, of the form

Mw � 0 �32�

where 0 is a null vector, w is a vector of unknown coe�cients de®ned as

wT � �A1,1, A2,1, B1,1, B2,1, A1,2, A2,2, B1,2, B2,2

� �33�

and

S. Kwak, C. Pozrikidis / International Journal of Multiphase Flow 27 (2001) 1±37 9



M �2666666666666664

I1�ka� I1�k1a� K1�ka� K1�k1a� ÿI1�ka� ÿI1�k2a� ÿK1�ka� ÿK1�k2a�
kI0�ka� k1I0�k1a� ÿkK0�ka� ÿk1K0�k1a� ÿkI0�ka� k2I0�k2a� kK0�ka� k2K0�k2a�
I1�kai� I1�k1ai� K1�kai� K1�k1ai� 0 0 0 0

kI0�kai� k1I0�k1ai� ÿkK0�kai� ÿk1K0�k1ai� 0 0 0 0

0 0 0 0 I1�kae� I1�k2ae� K1�kae� K1�k2ae�
0 0 0 0 kI0�kae� k2I0�k2ae� ÿkK0�kae� ÿk2K0�k2ae�
F1 F2 F3 F4 F5 F6 F7 F8

G1 G2 G3 G4 G5 G6 G7 G8

3777777777777775
Lengthy expressions for the functions Fi and Gi in terms of Bessel functions are given in
Appendix A. Setting the determinant of the matrix M equal to zero, we obtain a non-
polynomial algebraic equation for the complex phase velocity c. The number of solutions
corresponding to distinct normal modes could not be assessed except in the limit of Stokes
¯ow, as will be discussed in Section 3.
When the inner cylinder is absent, we obtain an annular layer surrounding a liquid thread.

For the velocity to be regular at the axis, the constants B1,1 and B2,1 must be set equal to zero,
yielding the following simpli®ed expressions for the interior stream function:

C1 � s
ÿ
A1,1I1�ks� � A2,1I1�k1s�

�
exp�ik�xÿ ct�� �35�

The linear system (34) undergoes analogous simpli®cations.
In the second special case, we consider an annular layer coated on the exterior surface of a

cylindrical tube while surrounded by an in®nite outer ¯uid. To ensure regular behavior at
in®nity, we set the coe�cients A1,2 and A2,2 equal to zero, and obtain the following simpli®ed
form for the exterior stream function:

C2 � s
ÿ
B1,2K1�ks� � B2,2K1�k2s�

�
exp�ik�xÿ ct�� �36�

The linear system (34) undergoes analogous simpli®cations.
In the simplest con®guration, both the internal and external cylinders are absent, and we

obtain a thread suspended in an in®nite ambient ¯uid. The stream functions for the internal
and external ¯ow are described, respectively, by Eqs. (35) and (36), and the linear system (34)
undergoes analogous simpli®cations. In the absence of a surfactant, the matrix in (34) reduces
to that presented by Tomotika (1935) for constant surface tension.

3. Linear stability analysis for Stokes ¯ow

When inertia is negligible within both ¯uids, the modi®ed complex wave numbers kj reduce
to the real wave number k, and Eq. (8) no longer provides us with the general solution. To
study this limit, we expand the modi®ed wave numbers k1 and k2 and the Bessel functions in
the last two terms on the right-hand side of (8) in Taylor series with respect to the
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dimensionless phase velocities ĉj � ic=�kvj � about k for j � 1, 2: Demanding that the resulting
expression satis®es the equations of Stokes ¯ow to ®rst-order with respect to ĉj, we derive
Tomotika's (1935) expression

Cj�s� � s

�
C1, jI1�ks� �D1, jK1�ks� � C2, j

1

2
s
ÿ
I0�ks� � I2�ks�

�
ÿD2, j

1

2
s
ÿ
K0�ks� � K2�ks�

��
exp�ik�xÿ ct��

�37�

where Cl,j and Dl,j are new coe�cients. Working as previously, we obtain the linear system
(32), where the vector of unknowns is de®ned as

wT � �C1,1, C2,1, D1,1, D2,1, C1,2, C2,2, D1,2, D2,2

� �38�

and the coe�cient matrix is given by

M �

�����������������

I1�ka� H1 k1�ka� H2 ÿI1�ka� H3 ÿK1�ka� H4

kI0�ka� L1 ÿkK0�ka� L2 ÿkIo�ka� L3 kKo�ka� L4

I1�Kai� N1 K1�kai� N2 0 0 0 0
kI0�kai� N3 ÿkK0�kai� N4 0 0 0 0
0 0 0 0 Ii�kae� Q1 K1�kae� Q2

0 0 0 0 kI0�kae� Q3 ÿkK0�kae� Q4

S1 S2 S3 S4 S5 S6 S7 S8

T1 T2 T3 T4 T5 T6 T7 T8

�����������������
�39�

Expressions for the entries Hi, Li, Ni, Qi, Si, and Ti are given in Appendix B. In the case of an
internally bounded annular layer, an externally bounded annular layer, or an unbounded
thread, the linear system (34) and the matrix (39) undergo straightforward simpli®cations, as
discussed in the preceding section.
Alternatively, we may solve the following set of equations in place of (5)

D2Cj � C�j , D2C�j � 0 �40�

and work with the general solution

Cj�s� � s
ÿ
E1,jI1�ks� � F1,jK1�ks� � E2,jsI0�ks� � F2,jsK0�ks�

�
exp�ik�x-ct�� �41�

derived by Goren (1962), where El,j and Fl,j are the new coe�cients. The properties of the
Bessel functions ensure that expression (41) reduces to (37) by an appropriate grouping of the
coe�cients. With the choice (41), we obtain the linear system (32), where the vector of
unknowns is de®ned as

wT � �E1,1, E2,1, F1,1, F2,1, E1,2, E2,2, F1,2, F2,2

� �42�

and the coe�cient matrix is given by
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M �

������������������

I1�ka� aI0�ka� K1�ka� aK0�ka� ÿI1�ka� ÿaI0�ka� ÿK1�ka� ÿaK0�ka�
kI0�ka� L̂1 ÿkK0�ka� L̂2 ÿkl0�ka� L̂3 kK0�ka� L̂4

l1�kai� aiI0�kai� K1�kai� aiK0�kai� 0 0 0 0
kI0�kai� N̂3 ÿkK0�kai� N̂4 0 0 0 0
0 0 0 0 I1�kae� aeI0�kae� K1�kae� aeK0�kae�
0 0 0 0 kI0�kae� Q̂3 ÿkK0�kae� Q̂4

S1 Ŝ2 S3 Ŝ4 S5 Ŝ6 S7 Ŝ8

T1 T̂2 T3 T̂4 T5 T̂6 T7 T̂8

������������������
�43�

Expressions for the entries L̂i, N̂i, Q̂i, Ŝi, and T̂i are given in Appendix B. The second and
sixth columns of (43) arise, respectively, by dividing the ®rst or ®fth column of (39) by k, and
adding the result to the second or sixth column, as shown in Appendix B. The fourth and
eighth column of (39) arise, respectively, by dividing the third or seventh column of (39) by k,
adding the result to the fourth or eighth column, and then switching the sign of the resulting
expressions, as shown in Appendix B.
Eliminating the denominators from all elements of matrix (39) or (43), by multiplying

corresponding rows by them, setting the determinant of the resulting matrix equal to zero, and
simplifying the resulting expressions, we obtain a cubic equation for the complex phase velocity
c. This equation has a double real root and a single real root, revealing the existence of two
normal modes. One of these modes is always stable, while the second is unstable when the
reduced wave number ka is less than 1.0, and stable when the reduced wave number ka is
larger than 1.0. In all cases, the sinusoidal perturbation in the surfactant concentration is either
in phase, or has a 1808 phase shift with respect to that of the radial interfacial displacement, as
required by the absence of a mean ¯ow. When the surface tension is constant, that is, in the
absence of a surfactant, the cubic equation for c reduces to a linear equation yielding a single
normal mode, in agreement with the results of previous analyses.
The occurrence of two normal modes in the presence of surfactant can be explained by the

following arguments. An arbitrary monochromatic perturbation disturbs the surfactant
concentration and radial position of the interface with a wave of arbitrary amplitude and
arbitrary phase shift. A normal mode perturbation requires a speci®c ratio between the
properly reduced amplitudes in concentration and deformation, and a speci®c value for the
phase shift. Counting the number of unknowns involved in the decomposition of the arbitrary
concentration and deformation waves into normal modes, reveals that only two modes are
necessary. When the surface tension is constant, the perturbation in concentration is
dynamically irrelevant, and the stable normal mode disappears, as will be described later in this
section. It may be argued that similar arguments can be made for the more general case of
Navier±Stokes ¯ow, but the generalization is not appropriate: only in Stokes ¯ow specifying
the instantaneous interfacial geometry, distribution of boundary velocity and interfacial
traction uniquely determines the ¯ow.
Deriving the explicit form of the generally cubic secular equation whose solution provides us

with the complex phase velocity, requires a large amount of algebra and was not attempted. As
a practical alternative, we compute the four real coe�cients of the cubic polynomial using ®ve-
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point ®nite di�erences, where the determinant of the regularized matrix is evaluated from the
LU decomposition. The real roots of the cubic polynomial are then found analytically using
Cardano's formula.

3.1. Case studies

We proceed now to present and discuss interface stability for several cases, illustrating the
e�ect of ®ve dimensionless parameters including the radii ratios ai=a and ae=a, the
physicochemical constant b de®ned in Eq. (28), the viscosity ratio l � m2=m1, and the surfactant
di�usivity expressed by the property number

a � ag0
mDs

�44�

As a tends to zero, the surfactant di�uses more readily over the interface, and the motion
occurs under uniform but time-dependent surface tension.
To begin, we consider the instability of a thread suspended in vacuum. In Fig. 2(a), we plot

the dimensionless growth rate ŜI � mkcIa=g0 for the conditionally unstable normal mode
against the reduced wave number ka for several values of b, for the case a � 1:0 and l � 0; cI
is the imaginary part of the complex phase velocity. The line marked b � 0 corresponds to
constant surface tension, g � g0: In this case, as ka becomes smaller, the growth rate increases
in a monotonic fashion and tends to a nonzero value. In contrast, in the presence of an active
surfactant, b 6�0, as ka is reduced from the value of unity, the growth rate reaches a maximum
at a nonzero value of ka and then tends to a small but nonzero value. We note that, under
constant surface tension, maximum growth rate occurs at a nonzero wave number for nonzero
and non-in®nite value of l (Tomotika, 1935), and this suggests that the surfactant acts to
increase the viscosity of the ambient ¯uid. A second important feature evident from Fig. 2(a) is
that the presence of a surfactant substantially reduces the growth rate of the conditionally
unstable mode, especially for moderate and small wave numbers, but it is not able to stabilize
the interface. As ka tends to zero, the growth rate of the stable normal mode tends to a
negative value that is independent of the parameter b: As ka is raised from zero to higher
values, the magnitude of the negative growth rate increases rapidly at a seemingly exponential
rate, yielding a fast decay.
The results of the linear stability analysis show that the sinusoidal perturbation in the

surfactant concentration is in phase with that of the interfacial deformation. In Fig. 2(b), we
plot the ratio of the reduced amplitude of the concentration and interfacial perturbation,
d � �G1=G0�=�a1=a�, for the unstable mode discussed in Fig. 2(a). As ka is raised, the magnitude
of d decreases monotonically from the value of unity to zero, and vanishes when ka has
reached the stability threshold. In contrast, as ka is raised, the magnitude of d for the stable
mode increases at an accelerating rate. Physically, the stable mode requires an increasingly
larger perturbation in the surfactant concentration with respect to the unperturbed value.
Because of this behaviour, in practice, an arbitrary perturbation is expected to consist mainly
of the unstable normal mode. As the sensitivity of the surface tension to the surfactant
concentration b is diminished, the unstable normal mode reduces to that for a thread with a
clean interface, as shown in Fig. 2(b), whereas the stable normal mode disappears by requiring
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a virtually in®nite perturbation in the surfactant concentration in order to survive (Kwak,
1999).
Results similar to those presented in Fig. 2 were obtained for nonzero values of the viscosity

ratio (Kwak, 1999). Parametric studies revealed a diminishing sensitivity of the growth rate on
b with increasing l due to the increasing signi®cance of the motion of the outer ¯uid on the
interfacial force balance. For example, when l � 1, ŜI decreases only by a few percent as b is
raised from 0 to 0.5. In contrast, the amplitude ratio d for the stable normal mode remains a
sensitive function of b for the reasons stated in the previous paragraphs.
Next, we investigate the e�ect of the property number a expressing the surfactant di�usivity.

In Fig. 3, we present a graph of the reduced growth rate for the unstable normal mode, plotted
against a on a log-linear scale, for l � 0, 1, b � 0:5, and ka � 0:5: When a is small, surfactant
di�usion dominates convection, the surfactant concentration is nearly uniform, and the motion
is similar to that occurring under constant surface tension. As a is raised, convection generates
signi®cant surfactant concentration gradients that cause the development of inhomogeneities in
surface tension. Finally, surfactant di�usion becomes insigni®cant when a is larger than 100.
Fig. 3 shows that the growth rate of the unstable mode is sensitive to the surfactant di�usivity
for l � 0 but not for l � 1, for reasons discussed in the previous paragraph. In contrast, the

Fig. 2. Instability of a thread suspended in an inviscid ambient ¯uid, l � 0, for a � 1:0, and b � 0:5, 0.4, 0.3, 0.2,
0.1, 0.01. (a) Graphs of the dimensionless growth rate and (b) ratio of the reduced amplitude of the concentration

and interfacial waves, d � �G1=G0�=�a1=a� for the unstable normal mode.
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Fig. 3. Instability of a thread suspended in an inviscid or viscous ambient ¯uid, l � 0, 1, for b � 0:5, subject to a
perturbation with ka � 0:5: The graphs illustrate the e�ect of the surfactant di�usivity, expressed by the parameter

a, on the growth rate of the unstable normal mode.

Fig. 4. Instability of a core-annular arrangement for l � 1, b � 0:5, a � 1, ae=a � 2, 3, 4, 5. (a ) Reduced growth
rate and (b) ratio of the reduced amplitudes of the concentration and height of the interfacial waves for the unstable
normal mode.
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growth rate of the stable mode is determined to be sensitive to the surfactant di�usivity
irrespective of the viscosity ratio.
We proceed now to discuss the in¯uence of the internal and external cylinders on the

properties of the normal modes. In Fig. 4(a), we present graphs of the reduced growth rates of
the unstable normal modes for a core-annular arrangement Ð in the absence of the inner
cylinder but in the presence of an outer cylinder Ð for l � 1, b � 0:5, a � 1, and ae=a � 2, 3,
4, 5: Fig. 4(a) reveals a signi®cant reduction in the growth rate of the unstable mode as the
outer cylinder approaches the interface, accompanied by a noticeable shifting of the wave
number for maximum growth towards higher values. This behavior contrasts with the
insensitivity of the growth rate of the stable mode. The behavior of the ratio of the
concentration and interface amplitudes d for the unstable normal mode is illustrated in
Fig. 4(b). An interesting new feature, in comparison with the unbounded thread, is that, as the
cylinder radius ae is reduced from 3a to 2a, d takes negative values for both modes and for all
wave numbers, indicating that a maximum in the interface deformation corresponds to a
minimum in the surfactant concentration distribution. A physical explanation for this inversion
could not be found.
In Fig. 5(a) and (b), we present results for an annular ®lm coated on the exterior surface of

a tube in the presence of an inner cylinder but in the absence of an outer cylinder Ð for l � 1,

Fig. 5. Instability of an annular layer coated on the exterior surface of a tube for l � 1, b � 0:5, a � 1, and
ai=a � 0:2, 0.4, 0.6, 0.8. (a) Reduced growth rate and (b) ratio of the reduced amplitudes of the concentration and
height of the interfacial waves for the unstable normal mode.
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b � 0:5, a � 1, and for ai=a � 0:2, 0:4, 0:6, 0:8: The behavior of the growth rate and of the
reduced amplitude ratio is qualitatively similar to those described in the previous paragraph.
As the inner cylinder approaches the interface, d remains positive for all wave numbers, which
contrasts with the inversion sign observed for the core-annular arrangement. These di�erences
attest to the subtlety of the capillary instability in the presence of a surfactant. Additional
results for unstable and stable normal modes, and for externally and internally bounded
arrangements are presented by Kwak (1999).

4. Nonlinear instability of an in®nite thread

In the second part of this paper, we study the nonlinear instability of the in®nite thread
under conditions of Stokes ¯ow, by numerical simulation. The numerical method involves two
main components: Computation of the instantaneous interface velocity using a boundary-
integral method; and updating of the surfactant concentration using a ®nite-volume method.
The governing equations and numerical implementation are discussed by Pozrikidis (1998,
1999). Brie¯y, to describe the motion of the interface, we trace one period of it in a meridional
plane with a set of marker points, typically on the order of 100; we approximate the contour
of the interface with a collection of circular arcs; we solve the integral equation for the velocity
at the position of the point particles using a boundary-element method; and we advance the
position of the point particles and the surfactant concentration using the ®rst- or second-order
Runge±Kutta method. Points are added at regions of large curvature, or when two adjacent
marker points have been separated by a large distance due to stretching. The surfactant
concentration at the new points is computed by quadratic interpolation. Numerical error
causes the volume of the thread over a period to decrease slightly during the simulations, but
the change was less than 0.5% in all cases, and less that 0.1% in most cases. The change in the
total amount of the surfactant over one period was less than 0.1% in all cases. Each
simulation requires approximately 48 h of CPU time on a SUN SPARCstation 20.
In the majority of the simulations, the radial position of the interface and the concentration

of the surfactant are set in a manner that is consistent with the properties of the normal
modes, subject to conservation of thread volume and total amount of the surfactant over each
period. Speci®cally, the initial shape of the interface and surfactant concentration are given by

s � aÿ1 � a1cos�kx�, G � Gÿ1 � G1cos�kx� �45�
where the coe�cient a1 is given an arbitrary value, and the coe�cients aÿ1, Gÿ1, G1 are
computed so as to satisfy the aforementioned constraints.
First, we con®rm that the numerical results are consistent with predictions of linear stability

theory in the limit of small-amplitude perturbations. In Fig. 6, we plot the ratio A=a1 against
the reduced time t̂ � gt=�ma� for an interface perturbed by an unstable normal mode, for
b � 0:5, a � 1, l � 0, 1, and for a perturbation with ka � 0:5 and initial amplitude
a1=a � 0:01; A is half the di�erence between the maximum and minimum interface radial
position. The results reveal an exponential initial growth at a rate that is virtually identical to
that predicted by linear theory. Nonlinear interactions and inevitable numerical contamination
cause deviation from the exponential growth at long times.
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Fig. 7(a) and (b) shows characteristic stages in the evolution of a thread with l � 1, b � 0:5,
a � 1, 100, subject to an unstable normal-mode perturbation with reduced wave length ka �
0:5 and a moderate amplitude a1=a � 0:2: For a � 1, reference to Fig. 2(a) shows that this
wave number is close to that for maximum growth rate; for a � 100, maximum growth rate
occurs approximately at ka � 0:575: The evolving pro®les shown in Fig. 7(a) and (b) clearly
illustrate that the presence of the surfactant may have a signi®cant in¯uence not only on the
growth rate of the instability, but also on the shapes of the developing interfacial patterns.
When a � 1, the surfactant di�uses readily over the interface, the distribution of the surfactant
concentration shows only mild variations, as illustrated in Fig. 7(c), and the motion is similar
to that occurring under constant surface tension discussed by Newhouse and Pozrikidis (1992),
Lister and Stone (1998) and Pozrikidis (1999). At long times, the thread breaks up into a
sequence of drops connected by spindle-like links. When a � 100, on the other hand, the onset
of large concentration gradients due to convection, as illustrated in Fig. 7(d), generate
Marangoni tractions that cause the spindle-like links to develop bulged shapes. In this case, the
concentration distribution develops four maxima and two minima over each period. Three
satellite drops are expected to develop within each period after the thread has broken up at the
points of minimum cross-section.
Further simulations showed that the wave length of the disturbance has a strong in¯uence

on the behavior of the thread at long times. As the reduced wave number ka is raised towards
the critical value of unity, the primary drops become larger, and the connecting links obtain
spindle-like shapes similar to those shown in Fig. 7(a). On the other hand, as the reduced wave
number becomes smaller, subharmonic waves amplify within each period, causing the
formation of multiple drops connected by multiple spindles. The number, size, and shapes of
the drops and links depend on the surfactant distribution established at long times. In
addition, the numerical results revealed that the subharmonic waves in¯uence the critical time
of thread breakup, t̂c, in a subtle fashion; a simple relationship between the initial disturbance
wave number and t̂c is not apparent. These features are illustrated in Fig. 8(a) and (b) for a
thread with l � 1, b � 0:5, a � 100, and ka � 0:9, 0:2; the evolution for ka � 0:5 was displayed
in Fig. 7(b). A tabulation of the number of the developing satellite drops in terms of b and a

Fig. 6. Numerical simulation of the instability of a thread suspended in an in®nite ambient ¯uid for l � 0, 1,

b � 0:5, a � 1, and ka � 0:5: Graph of the reduced amplitude of the perturbation showing agreement with linear
stability analysis for the unstable normal mode.
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would be useful as an engineering resource, but requires a large amount of work and was not
attempted.
Similar behavior was observed for threads with viscosity ratios larger than unity. In all cases,

when the parameter a is su�ciently high, the spindle-like links connecting the primary drops
develop secondary instabilities that give rise to wobbly pro®les. When l is set to a very large
value, yielding an inviscid thread suspended in a viscous ambient ¯uid, and the wave number is

Fig. 7. Characteristic stages in the evolution of a thread and corresponding distribution of the surfactant for l � 1,
b � 0:5, subject to an unstable normal-mode disturbance with ka � 0:5 and a1=a � 0:2; (a, c) a � 1, and (b, d)
a � 100: L is the wavelength of the perturbation. The critical time for breakup is estimated to be t̂c359:6 for case

(a) and t̂c365:95 for case (b).
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Fig. 8. Charactertic stages in the evolution of a thread for l � 1, b � 0:5, a � 100, and a1/a = 0.2 subject to an
unstable normal-mode disturbance with (a) ka = 0.9 and (b) ka = 0.2. The critical time for breakup is estimated to

be t̂c � 62:4 for case (a) and t̂c � 170 for case (b).

S. Kwak, C. Pozrikidis / International Journal of Multiphase Flow 27 (2001) 1±3720



not so small that subharmonic waves dominate, the thread breaks up in the middle of each
period yielding one primary drop within each period, for a wide variety of conditions (Kwak,
1999). The motion for l � 1 will be discussed in the next section in the context of the
instability of an annular layer.
The case l � 0, corresponding to a viscous thread suspended in an inviscid ambient medium,

deserves special attention. When the surface tension is constant, the instability causes the
thread to keep thinning at the troughs of a sinusoidal perturbation, and then breakup at a
®nite time into a series of primary drops. Before breakup, the drops are connected by
paraboloidal stems instead of spindle-like ligaments encountered earlier for l � 1: A small
amount of ambient-¯uid viscosity causes the points of breakup to be shifted toward the base of
the primary drops, as illustrated in Fig. 7(a) (e.g. Pozrikidis, 1999). In Fig. 9(a) and (b), we
present typical stages in the evolution of a thread in the presence of a surfactant, for l � 0,
b � 0:5, a � 1, 100, subject to a perturbation with ka = 0.5, and a1=a � 0:2: The
corresponding distributions of the surfactant concentration are shown in Fig. 9(c) and (d).
When a � 1, the motion is similar to that occurring under constant surface tension. When
a � 100, the nonuniformity of the surfactant distribution causes the primary drops to develop
spindle-like shapes.
A graph of the amplitude ratio A=a1 against the reduced time t̂ � gt=�am� corresponding to

the evolution illustrated in Fig. 9, reveals that the growth of the perturbation is nearly
exponential almost up to the point of breakup, with the nonlinear motion being only slightly
faster than that described by the linear theory (Kwak, 1999). In this case, nonlinear
interactions promote the rate of interfacial deformation instead of leading to saturation.
Similar behavior was observed for other values of viscosity ratio and parameters a and b:
Papageorgiou (1995) studied the evolution of a thread with constant surface tension g

suspended in an inviscid ambient ¯uid, corresponding to l � 0, and discovered a similarity
solution of a simpli®ed system of di�erential equations that describes the asymptotic behavior
near the critical time and around the critical location for breakup. The similarity solution
predicts that the minimum radius of the thread decreases linearly in time according to the
scaling law

f�xc, t� � g
12
ÿ
1� bc

�
m
�tc ÿ t� �46�

where xc is the axial position where breakup is expected to occur, and tc is the critical time for
breakup. The value of the constant bc arises by solving the nonlinear eigenvalue problem, and
Papageorgiou found that the least unstable ¯ow corresponds to bc � 0:175: Pozrikidis (1998b)
con®rmed that the similarity solution describes the late stage of breakup for a broad range of
generally non-monochromatic perturbations, but only when the viscosity ratio is precisely
equal to zero.
The derivation of Eq. (46) relies on the assumption that the shear stress vanishes along the

evolving interface, which requires that the surfactant is distributed uniformly over a distance
that is su�ciently larger than the instantaneous minimum thread diameter. Referring to
Fig. 9(c) and (d), we see that this assumption is satis®ed to a good approximation: large
gradients of the surfactant concentration near the point of breakup are not established.
Another assumption underlying the derivation of Eq. (46) is that the surface tension is
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Fig. 9. Characteristic stages in the evolution of a thread and corresponding distribution of the surfactant for l � 0,
b � 0:5, subject to an unstable normal-mode perturbation with ka � 0:5 and a1=a � 0:2; (a, c) a � 1 and (b, d)
a � 100:
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Fig. 9 (continued)
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constant, or at least varies at a rate that is much less than the rate of thread thinning. In the
present case, we expect that strong convection associated with the accelerating stagnation-point
¯ow near the point of breakup will cause depletion of the surfactant from that region. It
appears then reasonable to approximate the local surface tension with that corresponding to a
clean interface. With this approximation, the scaling law (46) becomes

f�xct� � g0
12�1ÿ b�ÿ1� bc

�
m
�tc ÿ t� �47�

In Fig. 10, we plot the reduced minimum radius of the thread occurring at the troughs of the
imposed sinusoidal perturbation, and obtain strong numerical evidence that the thread will
break up at a ®nite time. The dashed lines represent the predictions of the scaling law (46),
with g being the instantaneous value of the surface tension at the point of breakup at the end
of the simulation, and the dotted lines represent the predictions of the scaling law (47). The
agreement is good for a � 100 corresponding to Fig. 10(b) where the dashed and dotted lines
nearly coincide, but signi®cant discrepancies are observed for a � 1 corresponding to Fig. 10(a).
It is possible that the solid line will asymptote to the dotted line in Fig. 10(a) at later times
but, unfortunately, numerical di�culties did not allow us to continue the simulation and thus
con®rm this conjecture.

Fig. 10. Evolution of the minimum thread radius corresponding to Fig. 9; (a) a � 1 and (b) a � 100: The dotted and
dashed lines represent, respectively, predictions of a similarity solution developed by Papageorgiou.
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5. Instability of a ®lm lining the interior surface of a cylindrical tube

In Section 2, we saw that the presence of a surfactant signi®cantly reduces the growth rate of
disturbances along the interface of an annular layer coated on the interior surface of a
cylindrical tube. In this section, we consider the nonlinear growth of disturbances and study
the e�ect of a surfactant on the long-time behavior of the core-annular arrangement. First, we
use the boundary-integral method to simulate the evolution of the interface for viscosity ratio
l � 1: Second, we study the instability of a thin annular layer using an asymptotic ¯ow model
developed by Dumbleton and Hermans (1970), Carroll and Lucassen (1974) and Otis et al.
(1990), applicable for long wave length perturbations. In both cases, we compare the numerical
results with those obtained earlier for the unbounded thread and thereby assess the signi®cance
of the cylindrical boundary.

5.1. Boundary-integral simulations

The numerical method for simulating the motion of the interface in Stokes ¯ow is similar to
that outlined in Section 4. The main di�erence is that the kernel of the single-layer Stokes
potential involves the periodic Green's function for Stokes ¯ow inside a circular tube, which is
available in the form of a rapidly converging series. Considerations of computational cost
associated with the expensive evaluation of the Green's function required that we only consider
cases where the viscosity of the annular ¯uid is equal to the viscosity of the core ¯uid.
It is well known that an annular layer may develop in two complementary ways. When the

thickness of the layer is su�ciently small, the instability causes the development of a series of
annular collars attached to the cylinder. When the thickness of the layer is su�ciently larger,
the layer collapses into axisymmetric bridges extending across the tube, with collars possibly
forming between adjacent bridges at longer times.
In Fig. 11(a) and (b), we present typical stages in the evolution of the interface of an annular

layer with radius ae=a � 1:25, subject to a normal-mode perturbation of initial amplitude
a1=a � 0:1 and wave number ka � 0:7, which is close to the wave number with the maximum
linear growth rate. Because of the smallness of the magnitude of the growth rate and
restrictions on the time step for numerical stability, each one of these simulations consumes
several days of CPU time. For the simulation shown in Fig. 11(a), the interface is devoid of
surfactants, whereas for the simulation shown in Fig. 11(b) surfactant is present with b � 0:5
and a � 100: The annular layer is thick enough for the instability to lead to collapse in both
cases. Fig. 11(a) and (b) shows that the presence of the surfactant does not have an important
e�ect on the qualitative features of the evolution of the interface. Inspection of the times
corresponding to the depicted pro®les, however, shows that the presence of the surfactant
considerably delays the growth of the interfacial waves, in agreement with the results of linear
stability theory.
In Section 4, we saw that the wave number plays an important role in determining the

number of drops developing after the breakup of an in®nite thread. In the case of an annular
layer, we ®nd that the wave number plays a secondary role, irrespective of the presence of a
surfactant: Long waves cause the interface to collapse at a single point over each period.
Because of its reduced thickness, the thinned layer extending between two adjacent bridges is

S. Kwak, C. Pozrikidis / International Journal of Multiphase Flow 27 (2001) 1±37 25



Fig. 11. Characteristic stages in the evolution of a core-annular arrangement for ae=a � 1:25, (a) clean interface with
l � 1, ka � 0:7, and a1=a � 0:1: The critical time for breakup is estimated to be t̂c � 1861:25; (b) surfactant
contaminated interface with l � 1, b � 0:5, a � 100, ka � 0:7, and a1/a=0.1. The critical time for breakup is

estimated to be t̂c � 3965:
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expected to develop annular collars at long times. The developing distribution of the surfactant
concentration is qualitatively similar to the case with shorter wave length like Fig. 11(b). The
e�ect of the wave length and the presence of the surfactant become important when the
thickness of the annular layer is comparable to the radius of the core. For example, when
ae=a � 2:5 the qualitative features of the motion are similar to those discussed in the preceding
section for the unbounded thread (Kwak 1999).

5.2. Thin-layer approximation

When the thickness of an annular layer is su�ciently smaller than the axial length scale of
an interfacial wave, the motion may be described under the approximation of locally
unidirectional ¯ow independent of the viscosity of the core ¯uid, as long as the viscosity of the
annular layer is nonzero. Dumbleton and Hermans (1970) and Johnson et al. (1991) developed
a system of equations governing the motion of the interface for constant surface tension; the
second set of authors accounted for ¯uid inertia through an integral momentum balance.
Carroll and Lucassen (1974) and Otis et al. (1990) extended this system to account for variable
surface tension due to an insoluble surfactant. Otis et al. (1993) took into consideration the
®nite tube length and the time-dependence of the tube diameter.
In the presence of a surfactant, the lubrication model consists of the mass-conservation

equation

@f

@t
� @Q
@x

�48�

where s � f�x, t� describes the location of the interface and @f=@x is su�ciently smaller than
unity, complemented by the following expression for the ¯ow rate:

Q � ÿ@p2
@x

h3

2m2

�
2

3
� @g=@x

h� ÿ @p2=@x�
�

�49�

where h � ae ÿ f�x, t� is the local and instantaneous liquid layer thickness. The surface tension
is related to the surfactant concentration by means of the constitutive equation (29), and the
surfactant concentration evolves according to the equation

@G
@t
� ÿ

�
@�Gux�
@x

�
s�f
�Ds

@ 2G
@x 2

�50�

where

ux � ÿ@p2
@x

h2

2m2
x
�
2� 2 @g=@x

h� ÿ @p2=@x� ÿ x
�

�51�

is the axial velocity, and x � �ae ÿ s�=h is the non-dimensional radial position measured from
the tube up to the interface.
A normal mode linear stability analysis of the preceding set of equations, using the notation

of Section 2, yields the following quadratic equation for the growth rate
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where the coe�cients A, B, and C are de®ned as
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The ratio of the amplitude of the perturbation in surface tension to the amplitude of the
interface is given by
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Solving Eq. (52) provides us with two growth rates corresponding to a stable and a
conditionally unstable normal mode. In the absence of a surfactant, we obtain a single growth
rate that agrees with that derived by Dumbleton and Hermans (1970) and Johnson et al. (1991)
for constant surface tension. The lubrication model is physically consistent, in the sense that
the second mode is unstable for reduced wave numbers that are less than unity.
We carried out extensive comparisons between the growth rates predicted by Eq. (52) and

those computed by solving the unsimpli®ed eigenvalue problem for Stokes ¯ow discussed in
Section 2. When the viscosity of the core ¯uid is negligible, corresponding to viscosity ratio
l � 1, and the radius of the unperturbed interface is 95% of the tube radius, the maximum
di�erence in the growth rates over the entire range of unstable wave number 0 < ka < 1 is on
the order of 0.0001% in the presence or absence of a surfactant. When the radius of the
interface is reduced to 90% of the tube radius, the maximum di�erence in the order of 0.001%.
Johnson et al. (1991) observed similar agreement for the case of constant surface tension.
When the radius of the interface is reduced to 50% of the tube radius, the long-wave model
underestimates the growth rate by a factor of 0.5. Kwak (1999) tabulates the range of wave
numbers where the two predictions agree up to a speci®ed accuracy. In the limit of small wave
numbers and small layer thicknesses, the asymptotic results based on the thin-layer model
reduce to the exact results for any value of the viscosity ratio. For example, when l � 1 and
ka � 0:1, the growth rate predicted by the thin-layer model is 10% less than that arising from
the unsimpli®ed linear stability theory.
Otis et al. (1990) presented numerical solutions of the thin-layer equations computed by the

semi-implicit Adams±Bashforth method. To directly compare the predictions of the thin-layer
model with results of boundary integral simulations, we implemented a fully-implicit ®nite-
di�erence method. The method is ®rst-order accurate in time and second-order accurate in
space, and incorporates adaptive node regridding that uses cubic-spline interpolation to resolve
the ®ne features of the interface. Carrying out each time step requires solving a nonlinear
system of algebraic equations which was done using Newton's method with the Jacobian
evaluated by numerical di�erentiation. Further details on the numerical method are given by
Kwak (1999).
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In Fig. 12(a), we present stages in the instability of an annular layer in the absence of a
surfactant computed subject to the thin-layer approximation, for ae=a � 1:25, and for a
perturbation with reduced wave number ka � 0:7 and amplitude a1=a � 0:10: The evolving
shape of the interface in the presence of a surfactant with b � 0:5 and a � 100 is virtually
identical. The results show that the annular layer collapses at a single point within each period
yielding a liquid bridge. Inspection of Fig. 12(b), illustrating the evolution of the minimum
radial position of the interface, however, shows once again that the presence of a surfactant
considerably delays the growth of the interfacial waves, in agreement with the results of Otis et
al. (1993). In the small pulmonary airways, the tube radius ae corresponding to the total lung
capacity is on the order of 0.025 cm, and a is on the order of 107. At this high value of a,
surfactant di�usion is negligible compared to convection. Further simulations showed that the
wave number plays a secondary role in determining the nature of the breakup (Kwak, 1999),
as was observed for the case of l � 1 discussed in the preceding subsection.
Comparing the pro®le shown in Fig. 12(a), corresponding to l � 1, with that shown in

Fig. 11(a), corresponding to l � 1, we observe signi®cant di�erences during the later stages of
collapse regarding, in particular, the location of the point of pinch-o�. Previous work has
established that, in the absence of a surfactant and under conditions of Stokes ¯ow, a liquid
column suspended in vacuum, corresponding to l � 0, pinches o� symmetrically. When l � 1,
the column pinches o� unsymmetrically forming two conical structures on either side of the
point of breakup, as shown in Fig. 11(a) (Newhouse and Pozrikidis 1992, Lister and Stone,
1998, Pozrikidis 1999). The simulations presented in Fig. 12(a) suggest that an inviscid column
suspended in a viscous ¯uid, corresponding to l � 1, pinches o� at a single point over each
period. Boundary integral simulations for very high values of l con®rmed that this is also true
for an unbounded thread in the absence or presence of surfactants and in the context of Stokes
¯ow, as illustrated in Fig. 13. Now, in the two special cases l � 0 or 1 and in the absence of
surfactant, maximum growth rate according to linear theory occurs at zero wave number,
whereas for other values of l maximum growth rate occurs at nonzero wave numbers. This
observation suggests a tentative correspondence between the location of the wave number for
maximum growth rate in the wave number space, and the geometrical symmetry of the
interface on either side of the point of breakup.

6. Concluding remarks

The presence of a surfactant causes a discontinuity in the tangential component of the
traction across an interface, and the induced motion tends to immobilize portions of the
interface and to e�ectively raise the viscosity of the ambient ¯uid. The addition of a surfactant
is known to reduce the deformation of a viscous drop in simple shear or extensional ¯ow, in
spite of the accumulation of the surfactant at the tips and the consequent reduction in local
surface tension. In the case of a thread, the addition of a surfactant reduces the growth rate of
the unstable mode, and the reduction is greatest when one of the ¯uids is inviscid. The
numerical simulations presented in Section 5 suggest that, at l � 0, the e�ect of the surfactant
is not strong enough to alter the character of the motion during the late stages of the breakup
relative to that observed for a clean interface where breakup occurs at the trough of the
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Fig. 12. Simulations based on the lubrication approximation for ae=a � 1:25: (a) Characteristic stages in the

evolution of the interface for l � 1, b � 0, ka � 0:7, and a1=a � 0:1, at dimensionless times t̂ � 0, 125, 250, . . . ,
1875.0, 1928.76, 1932.51, 1932.69, 1932.71. (b) Evolution of the minimum core radius corresponding to (a) drawn
with the solid line; the dashed line shows the evolution for a contaminated interface with l � 1, b � 0:5, a � 100,

ka � 0:7, and a1=a � 0:1:
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sinusoidal perturbation. These results, however, were obtained with a linear relation between
the surface tension and surfactant concentration; it is possible that a nonlinear relation will
lead to a di�erent type of behaviour.
Concerning the instability of an annular layer coated on the interior of a cylindrical tube

with reference to the bronchial airways, we note that during breathing, the radius of the small
airways changes from the maximum value corresponding to the total lung capacity to a smaller
value. Since instability is initiated when the length of the airway becomes longer than 2pa,
where a is the instantaneous radius of the interface, the wave number is selected by the length
of the airway and does not necessarily correspond to the most unstable normal mode. A
comparison between the time scale of expiration texp and the time required for the annular
layer to collapse tcol is appropriate only when the radius of the annular ®lm and amplitude of
the perturbation can be assessed with certainty. For the conditions corresponding to dotted
line shown on Fig. 12(b), the time is on the order of 2� 103ma=g: Using m � 0:01 dyn s/cm2,
a � 0:025 cm, and g � 30 dyn/cm, we ®nd tcol � 0:017 s which is much less than the period of
normal breathing. Since, however, the time for collapse scales with the logarithm of the initial
amplitude of the perturbation, a weaker disturbance would have caused collapse before
inspiration. In the present as well as previous stability analyses, the amplitude of the
perturbation was treated as an unspeci®ed parameter and given an arbitrary value. This
ambiguity can be eliminated by imposing the condition of temporal periodicity across each
breathing cycle. This analysis of this periodic motion is under current investigation.

Fig. 13. Characteristic stages in the evolution of an in®nite thread for l � 10,000, b � 0:5, a � 10,000, ka � 0:7 and
a1=a � 0:2: The ®nal pro®le corresponds to t̂ � 78,000:
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Appendix A. Components of the secular matrix for Navier±Stokes ¯ow

In this appendix, we present the expressions for the components of the matrix M de®ned in
Eq. (34).
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Appendix B. Components of the secular matrices for Stokes ¯ow

In this appendix, we present the expressions for the components of the matrices M de®ned in
Eqs. (39) and (43).
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